

Friedel-Crafts Arylation Reactions of *N*-Sulfonyl Aldimines or Sulfonamidesulfones with Electron-Rich Arenes Catalyzed by FeCl₃·6H₂O: Synthesis of Triarylmethanes and Bis-heteroarylarylmethanes

Ponnaboina Thirupathi and Sung Soo Kim*

Department of Chemistry, Inha University, Incheon 402-751, South Korea

sungsoo@inha.ac.kr

Received May 24, 2010

The FeCl₃· $6H_2O$ -catalyzed Friedel–Crafts arylation reactions of *N*-sulfonyl aldimines or sulfonamidesulfones with electron-rich arenes and heteroarenes, which lead to the formation of triarylmethanes and bis-heteroarylarylmethanes, are developed. The use of mild reaction conditions, low catalytic loading, high yield, and single step synthesis are the advantages of the present procedure.

Introduction

Friedel–Crafts alkylation is one of the most important C–C bond-forming reactions in organic chemistry.^{1,2} These

(3) (a) Ishii, A.; Soloshonok, V. A.; Mikami, K. J. Org. Chem. 2000, 65, 1597. (b) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517. (c) Zhuang, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2001, 66, 1009. (d) Lyle, M. P. A.; Draper, N. D.; Wilson, P. D. Org. Lett. 2005, 7, 901.
(4) (a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A.

(4) (a) Bandini, M.; Cozzi, P. G.; Melchiorre, P.; Umani-Ronchi, A. *Angew. Chem., Int. Ed.* **2004**, *43*, 84. (b) Das, B.; Thirupathi, P.; Aravind Kumar, R.; Ravinder Reddy, K. *Catal. Commun.* **2008**, *9*, 635.

(5) (a) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160. (b) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030. (c) Evans, D. A.; Scheidt, K. A.; Frandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780. (d) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.; Linden, A. J. Am. Chem. Soc. 2005, 127, 4154. (e) Evans, D. A.; Fandrick, K. R.; Song, H. J. J. Am. Chem. Soc. 2005, 127, 8942. (f) Jia, Y.-X.; Yang, Y.; Zhu, S.-F.; Zhou, Q.-L. J. Org. Chem. 2006, 71, 75.

5240 J. Org. Chem. **2010**, 75, 5240–5249

reactions are usually assisted by either protic acid or Lewis acid catalyst. The Friedel-Crafts arylation reactions of carbonyl compounds,³ epoxides,⁴ and electron-deficient olefins⁵ as substrates have been extensively studied. The same reactions with imine substrates are completely atomeconomical access to obtain functionalized molecules, which are potential starting materials for many biologically active compounds. However, the study of the Lewis acid-catalyzed Friedel-Crafts arylation of imines is limited to synthesis of 3-substituted indole derivatives.⁶ Very recently You and co-workers report an enantioselective synthesis of unsymmetriacal triarylmethanes by chiral phosphoric acid.^{6d} Tian and co-workers have demonstrated the formation of bis-arylation of imines with Bi₂(SO₄)₃-TMSCl.⁷ Triarylmethanes and bis-hetero-arylarylmethanes have been prepared by using Lewis acid- or protic acid-catalyzed Friedel-Crafts arylation reactions of aldehydes with electron-rich arenes and

Published on Web 07/09/2010

⁽¹⁾ Friedel, C.; Crafts, J. M. C. R. Hebd. Seances Acad. Sci. 1877, 84, 1392–1450.

⁽²⁾ For reviews of Friedel-Crafts alkylation reactions, see: (a) Olah, G. A. Friedel-Crafts and Related Reactions; Wiley-Interscience: New York, 1964; Vol. II, Part I. (b) Roberts, R. M.; Khalaf, A. A. Friedel-Crafts Alkylation Chemistry: A Century of Discovery; Dekker: New York, 1984. (c) Olah, G. A. Friedel-Crafts and Related Reactions; Wiley: New York, NY, 1973; (d) Olah, G. A.; Krishnamurthi, R.; Prakash, G. K. S. Friedel-Crafts Alkylations in Comprehensive Organic Synthesis, 1st ed.; Pergamon Press: Oxford, UK, 1991. (e) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.

^{(6) (}a) Esquivias, J.; Gomez Arrays, R.; Carretero, J. C. Angew. Chem. 2006, 118, 645. (b) Jia., Y.-X.; Xie, J.-H.; Duan, H.-F.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 1621. (c) Kang, Q.; Zhao., Z.-A.; You, S.-L. J. Am. Chem. Soc. 2007, 129, 1484. (d) Sun, F.-L.; Zheng, X.-J.; Gu, Q.; He, Q.-L.; You, S.-L. Eur. J. Org. Chem. 2010, 47.

⁽⁷⁾ Liu, C.-R.; Li, M.-B.; Yang, C.-F.; Tian, S.-K. Chem. Commun. 2008, 1249.

SCHEME 1. General Preparation Method for the Synthesis of N-Sulfonyl Aldimines and Triarylmethanes

Ar¹ = 1,3,5-Trimethoxybenzene

 $Ar^2 = 1,3,5, 1,2,4$ -Trimethoxybenzene, 1,3-dimethoxybenzene, anisole, Indole, 2-methylfuran or 2-methylthiophene

heteroarenes.⁸ The alcohols⁹ and α -amido sulfones¹⁰ are also utilized for the Friedel-Crafts arylation reactions for the preparation of triarylmethanes and bis-heteroarylarylmethane.

However, many of these methods are associated with one or more drawbacks such as elevated temperature, long reaction time, and multistep process with low yields. In continuation of the development of useful synthetic methodology for C–C bond forming reactions, 9c,10,11 we report herein an efficient FeCl₃·6H₂O-catalyzed synthesis of triarylmethanes and bisheteroarylarylmethanes by Friedel-Crafts alkylation reactions of N-sulfonyl aldimines or sulfonamidesulfones. Iron

(9) (a) Katritzky, A. R.; Toader, D. J. Org. Chem. **1997**, 62, 4137. (b) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289. (c) Thirupathi., P.; Kim, S. S. Tetrahedron 2010, 66, 2995.

(10) (a) Thirupathi, P.; Kim, S. S. J. Org. Chem. 2009, 74, 7755. (b) Thirupathi, P.; Kim, S. S. Eur. J. Org. Chem. 2010, 1798. (c) He, Q. L.; Sun, F. L.; Zheng, X. J.; You, S. L. Synlett **2009**, 1111. (d) Sun, F.-L.; Zheng, X. J.; You, S. L. Synlett **2009**, 1111. (d) Sun, F.-L.; Zheng, X.-J.; Gu, Q.; He, Q.-L.; You, S.-L. Eur. J. Org. Chem. **2010**, 47. (e) Ballini, R.; Palmieri, A.; Petrini, M.; Torregiani, E. Org. Lett. **2006**, *8*, 18. (11) (a) Anjoy, M.; Kim, S. S. Tetrahedron **2008**, 64, 5509. (b) Kadam, C. T. Yu, S. S. Tetrahedron **2008**, 64, 5509. (b) Kadam, C. T. Yu, S. S. Tetrahedron **2008**, 64, 5509. (b) Kadam, C. T. Yu, S. S. Tetrahedron **2008**, 64, 5509. (b) Kadam, C. T. Yu, S. S. Tetrahedron **2008**, 64, 5509. (b) Kadam, S. S. Tetrahedron **2008**, 54, 5509. (b) Kadam, S. S. Tetrahedron **2008**, 5509. (b) Kadam, S. S. Tetrahedron **2008**, 5509. (b) Kadam, S. S. Tetrahedron **2008**, 500, 500. (b) Kadam, S. S. Tetrahedron **2008**, 500. (c) Ka

S. T.; Kim, S. S. Appl. Organomet. Chem. 2009, 23, 119. (c) Rajagopal, G.; Kim, S. S. Tetrahedron 2009, 65, 4351. (d) Thirupathi., P.; Kim, S. S. Tetrahedron 2009, 65, 5168. (e) Kadam, S. T.; Thirupathi., P.; Kim, S. S. Tetrahedron 2009, 65, 10883. (f) Kadam, S. T.; Thirupathi., P.; Kim, S. S. Tetrahedron 2010, 66, 1684.

(12) (a) Li, R.; Wang, S. R.; Lu, W. Org. Lett. 2007, 9, 2219. (b) Gelalcha, F. G.; Anilkumar, G.; Tse, M. K.; Bruckner, A.; Beller, M. Chem.-Eur. J. 2008, 14, 7687. (c) Fan, J.; Wang, Z. Chem. Commun. 2008, 5381. (d) Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhuo, X.-T.; Fan, C.-A. Chem.—Eur. J. 2009, 15, Chang, F. H., Fu, F. K., Elloy, J. H., Chi, C. H. Chen, Europer, J. K. Star, S. K. Liu, R.; Zhou, X. J. Org. Chem. 2009, 74, 3299. (f) Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630. (g) Ji, S.-J.; Zhou, M.-F.; Gu, D.-G.; Jiang, Z.-Q.; Loh, T.-P. Eur. J. Org. Chem. 2004, 1584. (h) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 3913. (i) Li, Z.; Duan, Z.; Kang, J.; Wang, H.; Yu, L.; Wu, Y. *Tetrahedron* **2008**, 64, 1924–1930. (j) Li, H.; Yang, J.; Liu, Y.; Li, Y. *J. Org. Chem.* **2009**, 74, 6797. (k) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. (1) Furstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. (m) Correa, A.; Garcia Mancheño, O.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (n) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500. (o) Enthaler, S.; Junge, K.; Beller, M. Angew. *Chem.* **2008**, *120*, 3363. *Angew. Chem.*, *Int. Ed.* **2008**, *47*, 3317. (p) Bauer, E. B. *Curr. Org. Chem.* **2008**, *12*, 1341. (q) Gaillard, S.; Renaud, J.-L. ChemSusChem 2008, 1, 505. (r) Furstner, A. Angew. Chem. 2009, 121, 1390. Angew. Chem., Int. Ed. 2009, 48, 1364. (s) Czaplik, W. M.; Mayer, M.; Cvengroc, J.; Jacobi von Wangelin, A. ChemSusChem 2009, 2, 396. (t) Sarhan, A. A. O.; Bolm, C. Chem. Soc. Rev. 2009, 38, 2730.

salts have attracted attention from synthetic organic chemists since iron is one of the most abundant metals. Many iron salts are inexpensive and commercially available.¹² These iron salts have been found to show promising catalytic ability in many organic transformations including Friedel-Crafts arylation reactions.^{12a,g-j} Friedel-Crafts arylation reactions of electron-rich arenes are a well-known process for the formation of the C–C bond from the aromatic C–H bond.²

The triarylmethanes, bis-heteroarylarylmethanes, and diarylalkanes have attracted considerable attention¹³ due to biological activity as antiviral,¹⁴ antitumor,¹⁵ antituber-cular,^{9a,16} antifungal,¹⁷ and anti-inflammatory agents.¹⁷ Moreover, these compounds have found widespread application in synthetic, medicinal, and industrial chemistry.¹⁸ The triarylmethyl derivatives are useful as protective groups,¹⁹ photochromic agents,²⁰ and dyes.²¹ Ring-hydroxylated triarylmethanes exhibit antitumor and antioxidant activities.8a Moreover, diheteroarylmethanes are of interest for the food industry as natural components of certain food and beverage items as well as flavor agents in coffee.²²

Result and Discussion

We have directed our studies toward the synthesis of triarylmethanes and bis-heterotriarylarylmethanes from N-sulfonyl aldimines by Friedel-Crafts arylation reactions. The N-sulfonyl aldimines (3) were prepared from the condensation of aldehydes (1), sulfonamides, and sodium salt of arenesulfinic acid to produce the sulfonamidesulfone (2) followed by treatment with saturated aq NaHCO₃ (Scheme 1).²³

(14) (a) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto, K. *Chem. Pharm. Bull.* **2005**, *53*, 1171. (b) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto, K. Chem. Pharm. Bull. 2003, 51, 1325

(16) (a) Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289. (b) Panda, G.; Shagufta; Mishra, J. K.; Chaturvedi, V.; Srivastava, A. K.; Srivastava, R.; Srivastava, B. S. Bioorg. Med. Chem. 2004, 12, 5269.

(17) Podder, S.; Choudhury, J.; Roy, U. K.; Roy, S. J. Org. Chem. 2007, 72, 3100.

(18) Schnitzer, R. J.; Hawking, F. Experimental Chemotherapy; Aca-demic Press: New York, 1963; Vol. I.
 (19) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic

Synthesis, 3rd ed.; Wiley: New York, 1999.

(20) (a) Aldag, R. Photochromism based on dissociation processes. In Photochromism: Molecules and Systems; Durr, H., Bouas-Laurent, H., Eds.; Elsevier: London, UK, 1990. (b) Irie, M. J. Am. Chem. Soc. 1983, 105, 2078.

(21) (a) Rys, P.; Zollinger, H. Fundamentals of the Chemistry and Application of Dyes; Wiley-Interscience: New York, 1972. (b) Muthyala, R.;

Katritzky, A. R.; Lan, X. Dyes Pigm. 1994, 25, 303.

(22) Katritzky, A. R.; Xie, L.; Fan, W.-Q. J. Org. Chem. 1993, 58, 4376. (23) Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.

^{(8) (}a) Mibu, N.; Sumoto, K. Chem. Pharm. Bull. 2000, 48, 1810. (b) Nair, V.; Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857. (c) Li, Z.; Duan, Z.; Kang, J.; Wang, H.; Yu, L.; Wu, Y. Tetrahedron 2008, 64, 1924. (d) Kodomari, M.; Nagamatsu, M.; Akaike, M.; Aoyama, T. Tetrahedron Lett. 2008, 49, 2537. (e) Jaratjaroonphong, J.; Sathalai, S.; Jechasauvapak, P.; Reutrakul., V. Tetrahedron Lett. 2009, 50, 6012. (f) Genovese, S.; Epifano, F.; Pelucchini, C.; Curini, M. *Eur. J. Org. Chem.* **2009**, 1132. (g) Shiri, M.; Zolfigol, M. A.; Kruger, G. H.; Tanbakouchian, Z. *Chem. Rev.* **2010**, *110*, 2250. (h) Shiri, M.; Zolfigol, M. A.; Ayazi-Nasrabadi, R. *Tetrahedron Lett.* **2010**, *51*, 264. (i) Chandrasekhar, S.; Khatun, S.; Rajesh, G.; Raji Reddy, Ch. *Tetrahedron Lett.* **2009**, *50*, 6693. (j) Silveira, C. C.; Mendes, S. R.; Libero, F. M.; Lenardao, E. J.; Perin, G. *Tetrahedron Lett.* **2009**, *50*, 6660. (k) Rad-Moghadam, K.; Sharifi-Kiasaraie, M. Tetrahedron 2009, 65, 8816. (1) Sobhani, S.; Safaei, E.; Hasaninejad, A.-R.; Rezazadeh, S. J. Organomet. Chem. 2009, 694, 3027.

⁽¹³⁾ For reviews, see: (a) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731-6747. (b) Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170. (c) Dinger, M. B.; Scott, M. J. J. Chem. Soc., Perkin Trans. 1 2000, 1741. (d) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303. (e) Duxbury, D. F. Chem. Rev. 1993, 93, 381.

⁽¹⁵⁾ Lewis, M. R.; Goland, P. P. Cancer Res. 1952, 12, 130-136.

entry

1

10

11

12

13

14

8*l*, 0

8m. 0

8n, 0

TABLE 1. Optimization of the Reaction Conditions for Friedel-Crafts Arylation Reactions of N-Tosyl(4-chlorobenzylidene)-4-methylbenzenesulfonamide with 1,3,5-Trimethoxybenzene^a

	catalyst (mol %)				yield (%)	
entry		solvent	reaction time (h)	reaction temp (°C)	7a	8a
1		CH ₂ Cl ₂	16	rt	NR	NR
2	CuI (10)	CH_2Cl_2	12	rt	NR	NR
3	$RhI_3 \cdot H_2O(10)$	CH_2Cl_2	12	rt	NR	NR
4	$BiCl_3(10)$	CH_2Cl_2	12	rt	49	0
5	$Fe(acac)_3(10)$	CH_2Cl_2	5.0	rt	37	0
6	$Fe(NO_3)_3 \cdot 9H_2O(10)$	CH_2Cl_2	5.0	rt	37	0
7	$Fe(ClO_4)_3 \cdot xH_2O(10)$	CH_2Cl_2	4.0	rt	78	10
8	$FeCl_2 \cdot 4H_2O(10)$	CH_2Cl_2	5.0	rt	48	0
9	$FeCl_3 \cdot 6H_2O(10)$	CH_2Cl_2	2.0	rt	83	13
10	FeCl ₃ (10)	CH_2Cl_2	2.0	rt	82	7
11	FeBr ₃ (10)	CH_2Cl_2	3.0	rt	80	10
12	$FeCl_3 \cdot 6H_2O(5)$	CH_2Cl_2	2.0	rt	86	10
13	$FeCl_{3} \cdot 6H_{2}O(2.5)$	CH_2Cl_2	2.0	rt	88	7
14	$FeCl_3 \cdot 6H_2O(2.5)$	CH_2Cl_2	2.0	0-rt	90	4
15	$FeCl_3 \cdot 6H_2O(2.5)$	CH_2Cl_2	4.5	0	27	0
16	$FeCl_3 \cdot 6H_2O(2.5)$	CH_2Cl_2	4.5	-10	NR	NR
17	$FeCl_3 \cdot 6H_2O(2.5)$	CHCl ₃	3.5	0-rt	78	11
18	$FeCl_3 \cdot 6H_2O(2.5)$	CH ₃ CN	2.5	0-rt	89	7
19	$FeCl_{3} \cdot 6H_{2}O(2.5)$	CH ₃ OH	3.5	0-rt	60	16
20	$FeCl_{3} \cdot 6H_{2}O(2.5)$	THF	4.0	0-rt	47	14
21	$FeCl_3 \cdot 6H_2O(2.5)$	CH ₃ NO ₂	2.5	0-rt	79	15
^a Reaction	on condition: N-tosyl(4-chlorobe	enzvlidene)-4-methvl	benzenesulfonamide (1.0 m	mol) and 1.3.5-trimethoxyben	zene (1.0 mmol) are used.

^bYield of isolated product after column chromatography.

e e e e e e e e e e e e e e e e e e e	• • • • •	i i	
$\begin{array}{c} \text{NSO}_2\text{Tol-}p \\ \text{R} \xrightarrow{\text{H}} \text{H}_{3\text{CO}} \xrightarrow{\text{FeCl}_3 - 6H_2} \\ \text{Gash } $	<i>p</i> -ToIO ₂ SHN OCH ₃ H ₃ CO <u>4</u> O (2.5 mol%) R H ₂ Cl ₂ H ₃ CO OCH ₃ H ₃ CO °C-r.t. H ₃ CO OCH ₃ H ₃ CO	R OCH ₃ H ₃ CO Ba-n	
		yield	$(\%)^{b}$
R in 3	reaction time (h)	7	8
$3a, 4-ClC_6H_4$	2.0	7a , 90	8a , 4
3b , 3-ClC ₆ H ₄	3.0	7b , 88	8b , 6
$3c, 2-ClC_6H_4$	3.5	7c, 84	8c, 5
3d, 4 -BrC ₆ H ₄	2.0	7d , 91	8d , 0
$3e, C_6H_5$	2.5	7e, 87	8e , 5
$3f, 4-NO_2C_6H_4$	3.5	7f , 87	8f , 4
$3g, 4-CNC_6H_4$	3.5	7g , 89	8g , 6
3h , 3 -CNC ₆ H ₄	3.5	7h , 86	8h , 4
3i, 4-MeOC ₆ H ₄	2.0	7i , 82	8i ,14
3i, 4-MeC ₆ H ₄	2.0	7 j, 90	8 j, 0
3k , 2-furanyl	2.0	7k ,86	8k , 0
-			

^aReaction condition: N-sulfonyl aldimines (1.0 mmol) and 1,3,5-trimethoxybenzene (1.0 mmol) are used at 0 °C-rt. ^bYield of isolated product after column chromatography.

3.0

2.5

2.5

The reaction between N-tosyl(4-chlorobenzylidene)-4methylbenzenesulfonamide 3a and 1,3,5-trimethoxybenzene 6 for 16 h in the absence of catalyst did not take place at all (entry 1). The reactions have been screened in the presence of various Lewis acids such as CuI, RhI₃·H₂O, BiCl₃, Fe(acac)₃,

31, 2-pyridinyl

3n, (CH₃)₂CH

3m, C₆H₅CH₂CH₂

 $Fe(NO_3)_3 \cdot 9H_2O$, $Fe(ClO_4)_3 \cdot XH_2O$, $FeCl_2 \cdot 4H_2O$, $FeCl_3 \cdot$ 6H₂O, FeCl₃, and FeBr₃ (entries 2-10). By considering the amount of catalyst, the reaction time, and the yield, FeCl₃ · 6H₂O (2.5 mol %) is suitable for the reaction (entry 13). The temperature effect on the reaction is studied in CH₂Cl₂ (entries

71, 81

7m, 85

7n, 78

13–16). The reaction carried out at 0 °C–rt is found to be the most effective (entry 14). The effect of various solvents is tested (entries 14 and 17–21). CH_2Cl_2 is found to be the solvent of choice in terms of yield and reaction time (entry 14) (Table 1).

The scope of the Friedel-Crafts arylation reactions of various N-sulfonyl aldimines with 1,3,5-trimethoxybenzene is evaluated and the results are summarized in Table 2. The reaction of N-tosyl(4-chlorobenzylidene)-4-methylbenzenesulfonamide (3a) with 1,3,5-trimethoxybenzene (6) produces the arylation product 7a in 90% yield, along with 4% of triarylmethane 8a (entry 1). N-Tosyl(3-chlorobenzylidene)-(3b), N-tosyl(2-chlorobenzylidene)- (3c), and N-tosyl(4bromobenzylidene)-4-methylbenzenesulfonamide (3d) react with 1,3,5-trimethoxybenzene (6) to afford the arylation products in 88%, 84%, and 91%, respectively (entries 2-4). The reaction of N-tosyl(benzylidene)-4-methylbenzenesulfonamide (3e) with 1,3,5-trimethoxybenzene (6) gave the product 7e (entry 5). The reaction of N-sulfonyl aldimines bearing electron-withdrawing groups on the phenyl ring proceeded smoothly to give the arylation products in good yields (entries 6-8). N-Sulfonyl aldimines with an electron-donating group on the phenyl ring react with 1,3,5-trimethoxybenzene (6) to obtain 7i and 7j in 82% and 90% yield, respectively (entries 9 and 10). Conspicuously there is hardly any substituent electronic effect on the Friedel-Crafts arylation reactions (compare the yield of entries 6-10). 2-Furanyl (3k) and 2-pyridinyl N-sulfonyl aldimines (31) exhibit similar reactivity toward the arylations (entries 11 and 12). The reactions of aralkyl (3m) and aliphatic N-sulfonyl aldimines (3n) give the corresponding products in 85% and 78%, respectively (entries 13 and 14). The pure aliphatic structure without benzene ring (entry 14) appears to yield a little lower yield.

A plausible mechanism for the formation of 7 and 8 is proposed in Figure 1. The first step is the formation of A, which is formed by coordination of the *N*-sulfonyl aldimines 3 to Fe(III) ion. *N*-Sulfonyl aldimine 3 is activated by Fe(III) ion to give more electrophilicity at the imine carbon of A. The nucleophilic carbon of 1,3,5-trimethoxybenzene 6 attacks on the imine carbon of A leading to the formation of the Fredel–Crafts product

FIGURE 1. Plausible mechanism of FeCl₃·6H₂O-catalyzed Friedel– Crafts arylation of *N*-sulfonyl aldimines with 1,3,5-trimethoxybenzene.

7. Again the Fe(III) ion forms coordination with the nitrogen atom to produce **B**. Subsequently the elimination of *p*-tolylsulfanimide from **B** and Fe(III) ion leads to the formation of oxonium ion **C**. Oxonium ion **C** then reacts with 1,3,5-trimethoxybenzene **6** giving rise to the formation of triarylmethane **8**.^{10b}

 TABLE 3.
 Synthesis of Triarylmethanes from N-Sulfonyl Aldimines and 1,2,4-Trimethoxybenzene^a

NSO R H 3	2 ^{Tol-p} 2 CH ₃ + 2 OCH ₃ <u>FeCl₃.6H₂(</u> OCH ₃ CH ₂ Cl OCH ₃ 9	H <u>;</u> D (5 mol%) I ₂ , r. t. H ₃ CO	3CO R OC OCH3 OC 10a-j	OCH3
		product	reaction	yield
entry	R in 3	10	time (h)	$(\%)^{b}$
1	3e, C ₆ H ₅	10a	2.5	76
2	3i, 4-MeOC ₆ H ₄	10b	2.0	88
3	30 , $3,4-(MeO)_2C_6H_3$	10c	2.0	90
4	$3\mathbf{j}, 4$ -MeC ₆ H ₄	10d	2.0	85
5	3d, 4-BrC ₆ H ₄	10e	2.5	86
6	$3a, 4-ClC_6H_4$	10f	2.5	85
7	3b , $3 - ClC_6H_4$	10g	2.5	82
8	$3c, 2-ClC_6H_4$	10h	2.5	78
9	3h , 3-CNC ₆ H_4	10i	3.0	80
10	3g, 4-CNC ₆ H ₄	10j	3.0	83
^a Rea	ction condition: N-sulfon	vl aldimines	(1.0 mmol) a	nd 1.2.4-

trimethoxybenzene (2.0 mmol) are used. ^bYield of isolated product after column chromatography.

The Friedel-Crafts arylation reactions of N-sulfonyl aldimines with 1,2,4-trimethoxybenzene generate the triarylmethanes (Table 3). Recently Deutsch and co-workers have demonstrated the synthesis of triarylmethanes through amidoalkylation of arenes in two steps with poor yield (18-22%).²⁴ Previously we have also reported the synthesis of triarylmethanes from α -amido sulfones in two steps with moderate yield (56-67%).^{10a,b} We are herein reporting the one-step synthesis of triarylmethanes using N-sulfonyl aldimines (3). The reaction of N-tosyl(benzylidene)-4-methylbenzenesulfonamide (3e) with 1,2,4-trimethoxybenzene (9) affords 10a in 76% yield (entry 1). N-Tosyl(4-methoxybenzylidene)- (3i), N-tosyl(3,4-dimethoxybenzylidene)- (30), and N-tosyl(4-methylbenzylidene)-4-methylbenzenesulfonamide (3j) react with 1,2,4-trimethoxybenzene (11) to give the triarylmethanes in 88%, 90%, and 85%, respectively (entries 2-4). The reactions of N-sulforyl aldimines (3) containing halogen groups of chlorine and bromine on the phenyl ring proceed smoothly to produce 10e, 10f, 10g, and 10h (entries 5-8). Interestingly, N-tosyl(3-cyanobenzylidene)- (3h) and N-tosyl(4-cyanobenzylidene)-4-methylbenzenesulfonamide (3g) treated with 1,2,4-trimethoxybenzene (9) produce the triarylmethanes in 80% and 83%, respectively (entries 9 and 10). The present method is equally applicable for both electrondonating as well as electron-withdrawing substrates for a similar yield of triarylmethanes. This method shows better yield in "one-step" compared to the "two-step" synthesis. ^{10a,b,24}

The Friedel-Crafts arylation reactions of *N*-sulfonyl aldimines with various electron-rich heteroarenes are examined (Table 4). The *N*-tosyl(benzylidene)-4-methylbenzenesulfonamide (**3e**) is treated with indole (**11a**) in the presence of 5.0%

⁽²⁴⁾ Deutsch, J.; Checinski, M.; Kockritz, A.; Beller, M. Catal. Commun. 2009, 10, 373.

TABLE 4. Synthesis of Bis-heterotriary larylmethanes from $N\-Sulfonyl$ Aldimines and Electron-Rich Hetero arenes"

NSO2TOI-P 2 AF H	FeCl ₃ .6H ₂ O (5 mol%)	, R			
$R^{+}H^{+}$	CH ₂ Cl ₂ , r. t.	Ar			
3 11		12a.n			
11a = r	ndole	120-11			
11b = 2-Methylfuran					
11c = 2-	Methyl thiophene				
	, i				

entry	R in 3	11	product 12	reaction time (h)	yield $(\%)^b$
1	$3e, C_6H_5$	11a	12a	2.5	88
2	$3e, C_6H_5$	11b	12b	2.0	90
3	$3e, C_6H_5$	11c	12c	2.5	82
4	3i, 4-MeOC ₆ H ₄	11a	12d	2.0	87
5	3p, 4-MeO-3-MeC ₆ H ₃	11a	12e	2.5	86
6	3j , 4-MeC ₆ H ₄	11a	12f	2.0	84
7	3a, 4-ClC ₆ H ₄	11a	12g	2.5	82
8	3i, 4-MeOC ₆ H ₄	11b	12h	2.0	92
9	3j, 4-MeC ₆ H ₄	11b	12i	2.0	90
10	3d, 4-BrC ₆ H ₄	11b	12j	2.0	87
11	3b , 3-ClC ₆ H ₄	11b	12k	3.0	85
12	3h , 3 -CNC ₆ H ₄	11b	121	3.0	78
13	$3g, 4-CNC_6H_4$	11b	12m	3.0	80
14	3n. (CH ₂) ₂ CH	11b	12n	3.0	71

^{*a*}Reaction condition: *N*-sulfonyl aldimines (1.0 mmol) and heteroarene (2.0 mmol) are used. ^{*b*}Yield of isolated product after column chromatography.

FeCl₃·6H₂O. The reaction was taking place to produce bis-heteroarylarylmethane 12a in 88% yield (entry 1). The reactions of N-tosyl(benzylidene)-4-methylbenzenesulfonamide (3e) with 2-methylfuran (11b) or 2-methylthiopene (11c) give bis-heteroarylarylmethanes (entries 2 and 3). Similarly, N-tosyl-(4-methoxybenzylidene)- (3i), N-tosyl(4-methoxy-3-methylbenzylidene)- (3p), N-tosyl(4-methylbenzylidene)- (3j) and Ntosyl(4-chlorobenzylidene)-4-methylbenzenesulfonamide (3a) react smoothly with indole (11a) to generate 12d, 12e, 12f, and 12g, respectively (entries 4-7). The reactions of N-tosyl(4methoxybenzylidene)- (3i), N-tosyl(4-methylbenzylidene)- (3j), N-tosyl(4-bromobenzylidene)- (3d), and N-tosyl(3-chlorobenzylidene)-4-methylbenzenesulfonamide (3b) with 2-methylfuran (11b) were taking place to yield the products in 92%, 90%, 87%, and 85% yield, respectively (entries 8-11). The reactions of Nsulfonyl aldimines (3h and 3g) bearing an electron-withdrawing group on the phenyl ring proceed smoothly to yield the bisheteroarylarylmethanes (entries 12 and 13). The presence of a strongly electron-withdrawing group such as a cyano group in R more or less reduces the yield. The isobutaryl group in N-sulfonyl aldimine (3n) significantly decreases the yield of diarylalkane 12n to 71% (entry 14).

The Friedel-Crafts arylation reactions of *N*-sulfonyl aldimines with less activated arenes such as 1,3-dimethoxybenzene and anisole are examined and the results are summarized in Table 5. The reaction of *N*-tosyl(benzylidene)-4-methylbenzenesulfonamide (**3e**) with 1,3-dimethoxybenzene (**13a**) was completed to afford **14a** in 55% yield
 TABLE 5.
 Friedel—Crafts Arylation of N-Sulfonyl Aldimines with 1,3-Dimethoxybenzene and Anisole^a

entry	R in 3	13	product 14	reaction time (h)	yield $(\%)^b$
1	$3e, C_6H_5$	13a	14a	2.0	55
2	3j , 4-MeC ₆ H ₄	13a	14b	2.0	61
3	3a, 4 -ClC ₆ H ₄	13a	14c	2.0	58
4	3b , 3-ClC ₆ H ₄	13a	14d	2.0	54
5	3f, 4 -NO ₂ C ₆ H ₄	13a	14e	3.0	52
6	$3e, C_6H_5$	13b	14f	6.0	53
^a Rea	action condition: N-su	ulfonylald	dimines (1.0 mi	mol) and 13 (2.	0 mmol)
are used	d. ^b Yield of isolated p	broduct a	fter column ch	romatography	ý.

(entry 1). *N*-Tosyl(4-methylbenzylidene)- (**3j**), *N*-tosyl(4chlorobenzylidene)- (**3a**), *N*-tosyl(3-chlorobenzylidene)-(**3b**), and *N*-tosyl(4-nitrobenzylidene)-4-methylbenzenesulfonamide (**3f**) were treated with 1,3-dimethoxybenzene (**13a**) to produce the corresponding triarylmethanes (entries 2–5). Similarly, *N*-tosyl(benzylidene)-4-methylbenzenesulfonamide (**3e**) also reacts with anisole (**13b**) to afford the regioselctive triarylmethane (entry 6).

The reaction of *N*-tosyl(4-bromobenzylidene)-4-methylbenzenesulfonamide (**3d**) with 1,3-dimethoxybenzene (**13a**) in the presence of 2.5 mol % of FeCl₃· $6H_2O$ produces the alkylation product **15** in 68% yield (Scheme 2).

The Friedel–Crafts arylation reactions of various sulfonamidesulfones (precursors of *N*-sulfonyl aldimines) with 1,2,4-trimethoxybenzene or 2-methylfuran were examined (Scheme 2). 4-Methyl-*N*-(phenyl(tosyl)methyl)sulfonamide (**16a**) is treated with 1,2,4-trimethoxybenzene (**9**) for 4.5 h to produce **10a** in 58% yield. The reactions of *N*-(4-methoxyphenyl(tosyl)methyl)- (**16b**) with 4-methyl-*N*-(*p*-tolyl(tosyl)methyl)benzenesulfonamide (**16c**) bring about the triarylmethanes in good yield. Similarly, 4-methyl-*N*-(phenyl(tosyl)methyl)- (**16a**), *N*-(4-methoxyphenyl(tosyl)methyl)- (**16b**), 4-methyl-*N*-(*p*-tolyl(tosyl)methyl)- (**16c**), and 4-methyl-*N*-(4bromophenyl(tosyl)methyl)benzenesulfonamide (**16d**) underwent reaction smoothly with 2-methylfuran (**11b**) to afford the **12b**, **12i**, **12j**, and **12k** in 65%, 71%, 70%, and 67% yield, respectively (Scheme 3).

To investigate the applications and advantages of mono-Friedel–Crafts arylation of N-sulfonyl aldimines with electronrich arenes, we focused on the one-pot synthesis of unsymmetrical triarylmethanes (Table 6). The reaction between N-tosyl-(4-chlorobenzylidene)-4-methylbenzenesulfonamide (**3a**) and

SCHEME 2. Friedel-Crafts Arylation of N-Tosyl(4-bromobenzylidene)-4-methylbenzenesulfonamide with 1,3-Dimethoxybenzene

SCHEME 3. Synthesis of Triarylmethanes and Bis-heteroarylarylmethanes from Sulfonamidesulfones

^{*a*}Reaction condition: *N*-sulfonyl aldimines (1.0 mmol), 1,3,5-trimethoxybenzene (1.0 mmol), and indole (1.0 mmol) are used. ^{*b*}Yield of isolated product after column chromatography.

SCHEME 4. Synthesis of Triarylmethanes: Comparison of Present Method with Literature

1,3,5-trimethoxybenzene (6) in the presence of 2.5% FeCl₃· $6H_2O$ at 0 °C-rt was stirred for 2.0 h and then 1 equiv of indole (11a) was added to the mixture in same reaction pot. The reaction mixture was again stirred for 24 h at rt. The major product obtained in this reaction is mono-Friedel-Crafts arylation

product **7a** (65%) and the second Friedel-Crafts arylation product **8a** (5%). Unexpectedly, bis-indolylmethane (**12g**) is also obtained in 18% yield (entry 1). After addition of indole (**11a**) the reaction temperature was raised to reflux but there was not much improvement in the yield (entry 2). Similarly,

SCHEME 5. Synthesis of Bis-heteroarylmethanes: Comparison of Present Method with Literature

N-tosyl(benzylidene)- (**3e**) and *N*-tosyl(4-methoxybenzylidene)-4methylbenzenesulfonamide (**3i**) give **7e**, **8e**, and **12a** and **7i**, **8i**, and **12h** in 68%, 4%, and 12% and 41%, 12%, and 38%, respectively (entries 3 and 4).

The synthesis of triarylmethane and bis-heteroarylmethane by Friedel–Crafts arylation of *N*-sulfonyl aldimines with electron-rich arenes is compared with other literature (Scheme 4 and Scheme 5).

Conclusions

 $FeCl_3 \cdot 6H_2O$ -catalyzed Friedel-Crafts arylation reactions of electron-rich arenes with *N*-sulfonyl aldimines or sulfonamidesulfones are described. The identical catalytic system is employed for the consecutive Friedel-Crafts reactions. The advantages of the method include (1) low catalyst loading and (2) mild reaction conditions.

Experimental Section

A. Experimental Procedure for the Friedel–Crafts Alkylation of N-Sulfonyl Aldimines with 1,3,5-Trimethoxybenzne. To a stirred solution of N-sulfonyl aldimines (1 mmol) and FeCl₃. $6H_2O$ (2.5 mol %) in CH₂Cl₂ (3 mL) under nitrogen atmosphere at 0 °C is added 1,3,5-trimethoxybenzne (1 mmol). The mixture is stirred at 0 °C–rt and monitored by TLC. After completion, the reaction mixture is filtered, and the residue is washed with diethyl ether (3 × 5 mL). The filtrate is dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude product is subject to flash column chromatography (silica gel, hexane– EtOAc, 4:1 to 3:1) to obtain the pure product.

ACS reagent grade $FeCl_3 \cdot 6H_2O$ is used for the reaction. The purity of $FeCl_3 \cdot 6H_2O$ is 97% (CAS No 10025-77-1, Sigma-Aldrich).

The products were characterized by ¹H and ¹³C NMR data that are consistent with literature values. Melting point, HRMS-FAB, and ¹H and ¹³C NMR values for the new products are given below.

7a: white solid, mp 168–169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 10.6 Hz, 1H), 6.05 (d, J = 10.6 Hz, 1H), 5.90 (s, 2H), 3.74 (s, 3H), 3.62 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 157.6, 142.4, 140.0, 137.2, 132.0, 128.6, 127.7, 126.6, 108.0, 90.4, 55.4, 55.2,

50.8, 21.2; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄O₅NClS 461.1064, found 461.1061.

7b: white solid, mp 131–132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.25 (s, 1H), 7.16–7.12 (m, 3H), 7.02 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 10.6 Hz, 1H), 6.08 (d, J = 10.6 Hz, 1H), 5.87 (s, 2H), 3.71 (s, 3H), 3.59 (s, 6H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 157.6, 143.6, 142.3, 137.2, 133.4, 129.0, 128.6, 126.6, 126.5, 126.4, 124.5, 107.9, 90.4, 55.4, 55.2, 50.9, 21.2; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄-O₅NClS 461.1064, found 461.1064.

7c: white solid, mp 124 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.37–7.34 (m, 1H), 7.28–7.26 (m, 1H), 7.11–7.07 (m, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.41 (d, J = 10.2 Hz, 1H), 5.98 (d, J = 10.2 Hz, 1H), 5.87 (s, 2H), 3.72 (s, 3H), 3.62 (s, 6H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 158.1, 142.3, 138.2, 137.7, 133.5, 129.7, 129.4, 128.6, 128.1, 126.9, 125.9, 107.5, 90.6, 55.4, 55.2, 50.3, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄O₅NCIS 461.1064, found 461.1064.

7d: white solid, mp 155 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 6.35 (d, J = 11.0 Hz, 1H), 6.03 (d, J = 10.6 Hz, 1H), 5.85 (s, 2H), 3.70 (s, 3H), 3.58 (s, 6H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 157.5, 142.4, 140.6, 137.2, 130.7, 128.5, 128.1, 126.6, 120.1, 108.0, 90.3, 55.4, 55.1, 50.8, 21.1; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄O₅-NBrS 505.0559, found 505.0560.

7e: white solid, mp 167–168 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 2H), 7.24–7.15 (m, 5H), 6.99 (d, J = 8.0 Hz, 2H), 6.21 (d, J = 11.0 Hz, 1H), 6.10 (d, J = 11.0 Hz, 1H), 5.88 (s, 2H), 3.74 (s, 3H), 3.62 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 157.9, 142.3, 141.3, 137.6, 128.6, 127.9, 126.8, 126.5, 126.4, 90.6, 55.6, 55.3, 51.5, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄O₅NS 427.1453, found 427.1455.

7f: yellow solid, mp 135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.22 (d, J = 10.6 Hz, 1H), 6.14 (d, J = 10.6 Hz, 1H), 5.91 (s, 2H), 3.75 (s, 3H), 3.63 (s, 6H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 157.6, 149.4, 146.6, 142.8, 137.2, 128.8, 127.1, 126.8, 123.1, 107.8, 90.5, 55.6, 51.0, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₄O₇N₂S 472.1304, found 472.1302.

7g: white solid, mp 164–165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.35 (d,

 $J = 8.4 \text{ Hz}, 2\text{H}, 6.99 \text{ (d}, J = 8.7 \text{ Hz}, 2\text{H}), 6.39 \text{ (d}, J = 10.6 \text{ Hz}, 1\text{H}), 6.09 \text{ (d}, J = 10.2 \text{ Hz}, 1\text{H}), 5.86 \text{ (s}, 2\text{H}), 3.73 \text{ (s}, 3\text{H}), 3.61 \text{ (s}, 6\text{H}), 2.30 \text{ (s}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 161.1, 157.5, 147.2, 142.8, 137.1, 131.5, 128.6, 126.9, 126.9, 126.6, 118.8, 109.9, 107.5, 90.3, 55.4, 55.1, 51.0, 21.1; HRMS-FAB (m/z) [M]^+ calcd. for C_{24}H_{24}O_5N_2S 452.1406, found 452.1404.$

7h: white solid, mp 145 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.44–7.40 (m, 2H), 7.34–7.29 (m, 1H), 7.02 (d, J = 8.0 Hz, 2H), 6.25 (d, J = 10.6 Hz, 1H), 6.07 (d, J = 10.6 Hz, 1H), 5.89 (s, 2H), 3.74 (s, 3H), 3.61 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.3, 157.6, 143.2, 142.7, 137.2, 131.1, 130.2, 129.9, 128.8, 128.7, 126.8, 119.0, 111.8, 107.6, 90.5, 55.6, 55.3, 50.8, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₄H₂₄O₅N₂S 452.1406, found 452.1405.

7i: white solid, mp 153 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 6.21 (d, J = 10.6 Hz, 1H), 6.05 (d, J = 11.0 Hz, 1H), 5.87 (s, 2H), 3.74 (s, 3H), 3.73 (s, 3H), 3.62 (s, 6H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 158.3, 157.8, 142.3, 137.5, 133.3, 128.6, 127.6, 127.8, 113.2, 198.7, 90.5, 55.5, 55.2, 55.1, 51.1, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₄H₂₇O₆NS 457.1559, found 457.1561.

7j: white solid, mp 165–166 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 6.24 (d, J = 11.0 Hz, 1H), 6.07 (d, J = 11.0 Hz, 1H), 5.87 (s, 2H), 3.72 (s, 3H), 3.61 (s, 6H), 2.28 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 157.8, 142.2, 138.2, 137.5, 136.0, 128.5, 126.7, 126.3, 108.6, 90.5, 55.5, 55.2, 51.3, 21.2, 20.9; HRMS-FAB (m/z) [M]⁺ calcd for C₂₄H₂₇O₅NS 441.1610, found 441.1612.

7k: white solid, mp 127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.22 (s, 1H), 7.02 (d, J = 8.0 Hz, 2H), 6.20–6.18 (m, 1H), 6.15 (d, J = 11.0 Hz, 1H), 6.12 (d, J = 10.6 Hz, 1H), 5.98 (d. J = 3.3 Hz, 1H), 5.90 (s, 2H), 3.74 (s, 3H), 3.67 (s, 6H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.0, 158.1, 153.6, 142.4, 141.6, 137.6, 128.7, 126.8, 110.0, 106.7, 106.3, 94.4, 90.7, 55.7, 55.2, 46.9, 21.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₁H₂₃O₆NS 417.1246, found 417.1245.

7: white solid, mp 162–163 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 5.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 7.3 Hz, 1H), 7.34 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 8.0 Hz, 3H), 6.57 (d, J = 9.5 Hz, 1H), 6.17 (d, J = 9.1 Hz, 1H), 5.89 (s, 2H), 3.71 (s, 3H), 3.58 (s, 6H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 159.9, 158.1, 148.1, 142.2, 137.6, 135.9, 128.6, 126.9, 121.3, 120.9, 109.5, 90.7, 55.6, 55.1, 52.1, 21.3; HRMS-FAB (m/z) [M + H]⁺ calcd for C₂₂H₂₅O₅N₂S 429.1484, found 429.1485.

7m: white solid, mp 114 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.24–7.19 (m, 2H), 7.13–7.10 (m, 3H), 6.94 (d, J = 8.0 Hz, 2H), 5.84 (d, J = 11.0 Hz, 1H), 5.80 (s, 2H), 4.91–4.84 (m, 1H), 3.70 (s, 3H), 3.64 (s, 6H), 2.80–2.72 (m, 1H), 2.51–2.43 (m, 1H), 2.25 (s, 3H), 2.16–2.07 (m, 1H), 1.93–1.83 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 142.2, 142.1, 137.6, 128.5, 128.3, 128.1, 126.7, 125.5, 108.9, 90.3, 55.4, 55.2, 49.3, 37.2, 32.6, 21.2; HRMS-FAB (m/z) [M]⁺ calcd for C₂₅H₂₉O₅NS 455.1766, found 455.1765.

7n: white solid, mp 139–140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 5.83 (s, 2H), 5.76 (d, J = 11.0 Hz, 1H), 4.44–4.38 (m, 1H), 3.70 (s, 6H), 3.58 (s, 3H), 2.25 (s, 3H), 2.05–1.95 (m, 1H), 1.09 (d, J = 8.0 Hz, 3H), 0.63 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 157.8, 157.7, 141.9, 137.6, 129.6, 128.3, 126.6, 126.4, 108.7, 90.5, 89.8, 55.6, 55.2, 32.6, 21.2, 20.1, 19.3; HRMS-FAB (m/z) [M + H]⁺ calcd for C₂₀H₂₇NO₅S 394.1688, found 394.1688.

8a: white solid, mp 170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.15 (s, 1H),

6.10 (s, 4H), 3.78 (s, 6H), 3.51 (s, 12H); 13 C NMR (100 MHz, CDCl₃) δ 159.6, 159.1, 144.2, 129.4, 129.0, 126.9, 113.4, 91.6, 55.9, 55.9, 55.0, 36.4; HRMS-EI (*m*/*z*) [M]⁺ calcd for C₂₅H₂₇-ClO₆ 458.1496, found 458.1497.

8b: white solid; mp 160–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.07–7.00 (m, 3H), 6.91 (d, J = 7.4 Hz, 1H), 6.17 (s, 1H), 6.12 (s, 4H), 3.80 (s, 6H), 3.53 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.3, 148.1, 132.8, 128.1, 127.9, 126.0, 124.2, 113.2, 91.6, 56.0, 55.0, 36.8; HRMS-EI (m/z) [M]⁺ calcd for C₂₅H₂₇-ClO₆ 458.1496, found 458.1497.

8c: white solid; mp 200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 1H), 7.05–7.03 (m, 3H), 6.30 (s, 1H), 6.11 (s, 4H), 3.78 (s, 6H), 3.50 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 159.1, 142.8, 133.4, 130.4, 128.1, 125.8, 125.6, 113.7, 92.0, 56.3, 56.3, 55.1, 35.8; HRMS-EI (m/z) [M]⁺ calcd for C₂₅H₂₇ClO₆ 458.1496, found 458.1492.

8e: white solid; mp 191 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.16–7.12 (m, 2H), 7.05–7.03 (m, 3H), 6.21 (s, 1H), 6.11 (s, 4H), 3.78 (s, 6H), 3.49 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 1159.7, 159.1, 142.8, 133.4, 130.4, 128.1, 125.8, 125.6, 113.7, 92.0, 56.3, 56.3, 55.1, 35.8.^{8b}

8f: yellow solid; mp 159–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 6.26 (s, 1H), 6.10 (s, 4H), 3.79 (s, 6H), 3.52 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 159.6, 154.8, 145.1, 128.4, 122.4, 112.2, 91.4, 55.9, 55.2, 37.2.^{8b}

8g: white solid; mp 153–154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 6.24 (s, 1H), 6.10 (s, 4H), 3.79 (s, 6H), 3.51 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 159.5, 152.2, 130.9, 128.4, 119.9, 112.3, 107.5, 91.5, 55.9, 55.1, 37.2; HRMS-EI (m/z) [M]⁺ calcd for C₂₆H₂₇-NO₆ 449.1838, found 449.1840.

8h: white solid; mp 139 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.22 (m, 4H), 6.20 (s, 1H), 6.10 (s, 4H), 3.79 (s, 6H), 3.52 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 159.5, 147.4, 132.5, 131.6, 128.0, 127.6, 120.0, 112.3, 110.7, 91.4, 55.8, 55.1, 36.7; HRMS-EI (*m*/*z*) [M]⁺ calcd for C₂₆H₂₇NO₆ 449.1838, found 449.1836.

8i: white solid; mp 133–134 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H), 6.15 (s, 1H), 6.10 (s, 4H), 3.78 (s, 6H), 3.50 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 159.0, 156.6, 137.7, 133.7, 129.7, 128.7, 127.9, 114.6, 112.4, 91.9, 56.2, 55.1, 36.3; HRMS-EI (m/z) [M]⁺ calcd for C₂₆H₃₀O₇ 454.1992, found 454.1993.

B. Experimental Procedure for the Synthesis of Triarylmethanes or Heterotriarylmethanes. To a mixture of of *N*sulfonyl aldimines or sulfonamidesulfones (1 mmol) and FeCl₃·6H₂O (5.0 mol %) in CH₂Cl₂ (3 mL) under nitrogen, electron-rich arene or heteroarene (2.0 mmol) is added and the mixture is stirred at rt. The progress of the reaction mixture is monitored by TLC. After completion of the reaction, the mixture is filtered, and the residue is washed with diethyl ether (3 × 5 mL). The combined organic portions were washed with water (5 mL) and saturated aqueous NH₄Cl (5 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude product is subjected to flash column chromatography (silica gel, hexane–EtOAc, 4:1 to 3:1) to obtain pure product.

10a: white solid, mp 126–127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.21 m 2H), 7.17–7.13 (m, 1H), 7.04 (d, J = 8.2 Hz, 2H), 6.54 (s, 2H), 6.42 (s, 2H), 6.07 (s, 1H), 3.87 (s, 6H), 3.65 (s, 6H), 3.62 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 151.5, 147.9, 144.2, 142.6, 128.9, 127.9, 125.7, 124.5, 114.5, 98.3, 57.0, 56.6, 56.0, 42.5. ^{8e,10a,b}

10b: white solid, mp 131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 8.2 Hz, 2H), 6.69 (s, 2H), 6.58 (s, 2H), 6.17 (s, 1H), 4.02 (s, 6H), 3.91 (s, 3H), 3.80 (s, 6H), 3.79 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 158.2, 152.1, 148.5, 143.2, 136.8, 130.5, 125.5, 115.0, 113.9, 99.0, 57.6, 57.2, 56.6, 55.7, 42.2.^{8e,10a,b} **10c:** white solid, mp 110–111 °C; ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 6.76 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.56 (s, 2H), 6.53 (s, 1H), 6.45 (s, 2H), 6.03 (s, 1H), 3.90 (s, 6H), 3.86 (s, 3H), 3.78 (s, 3H), 3.69 (s, 6H), 3.65 (s, 6H); ¹³C NMR (50 MHz, CDCl₃, 25 °C) δ 151.5, 148.5, 148.0, 147.0, 142.7, 136.7, 124.8, 120.9, 114.4, 112.6, 110.5, 98.4, 57.1, 56.7, 56.0, 55.7, 42.0.^{8e,10a,b}

10d: white solid; mp 142–143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.51 (s, 2H), 6.42 (s, 2H), 6.02 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.63 (s, 6H), 3.61 (s, 6H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 147.9, 142.6, 141.0, 135.0, 128.8,128.6, 124.8, 114.5, 98.4, 57.0, 56.6, 56.0, 42.0, 20.9.^{8e}

10e: white solid; mp 141 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.50 (s, 2H), 6.36 (s, 2H), 5.96 (s, 1H), 3.82 (s, 6H), 3.62 (s, 6H), 3.60 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 151.5, 148.2,142.7, 131.0, 130.7, 128.8, 123.6, 119.5, 114.4, 98.2, 56.8, 56.7, 56.0, 42.1.^{8e}

10f: white solid; mp 168–169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.53 (s, 2H), 6.39 (s, 2H), 6.01 (s, 1H), 3.87 (s, 6H), 3.65 (s, 6H), 3.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 148.1, 142.9, 142.6, 131.3, 130.2, 128.0, 123.7, 114.3, 98.1, 56.8, 56.6, 56.0, 41.9.^{8e,10a,b}

10g: white solid; mp 169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.16–7.14 (m, 2H), 7.03–7.01 (m, 1H), 6.94–6.91 (m, 1H), 6.54 (s, 2H), 6.40 (s, 2H), 6.03 (s, 1H), 3.87 (s, 6H), 3.64 (s, 6H), 3.61 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 148.2, 146.7, 133.8, 129.1, 129.0, 127.1, 125.9, 123.5, 114.5, 98.2, 56.8, 56.7, 56.0, 42.3; HRMS-EI (*m*/*z*) [M]⁺ calcd for C₂₅H₂₇ClO₆ 458.1496, found 458.1497.

10h: white solid; mp 126–127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.2 Hz, 1H), 7.13–7.10 (m, 2H), 6.87 (d, J = 7.2 Hz, 1H), 6.54 (s, 2H), 6.32 (s, 1H), 6.31 (s, 2H), 3.87 (s, 6H), 3.66 (s, 6H), 3.61 (s, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 151.6, 148.1, 142.5, 142.0, 134.3, 129.8, 129.4, 127.2, 126.0, 122.8, 114.1, 98.2, 56.8, 56.5, 55.9, 40.2.^{10a,b}

10: white solid; mp 141 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 6.54 (s, 2H), 6.36 (s, 2H), 6.06 (s, 1H), 3.88 (s, 3H), 3.65 (s, 6H), 3.63 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 150.6, 148.5, 142.7, 131.7, 129.5, 122.4, 119.2, 114.4, 109.4, 98.0, 56.7, 56.6, 56.0, 43.0; HRMS-EI (m/z) [M]⁺ calcd for C₂₆H₂₇NO₆ 449.1838, found 449.1841.

10j: white solid; mp 139–140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 1H), 7.33–7.29 (m, 3H), 6.54 (s, 2H), 6.36 (s, 2H), 6.04 (s, 1H), 3.90 (s, 6H), 3.67 (s, 3H), 3.64 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 148.8, 146.5, 143.0, 133.7, 132.5, 129.8, 128.8, 122.7, 199.5, 114.7, 112.1, 98.3, 56.9, 56.8, 56.3, 42.7; HRMS-EI (m/z) [M]⁺ calcd for C₂₆H₂₇-NO₆ 449.1838, found 449.1840.

12a: brown solid; mp 141–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (br s, 2H), 7.40–7.29 (m, 5H), 7.28–7.25 (m, 3H), 7.22–7.14 (m, 3H), 7.02–7.00 (m, 2H), 6.65 (s, 2H), 5.89 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 243.9, 136.7, 128.7, 128.2, 127.0, 126.1, 123.6, 121.9, 119.9, 119.7, 119.2, 111.0, 40.2.^{8i–1}

12b: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.27 (m, 2H), 7.23 (d, J = 8.5 Hz, 3H), 5.87–5.85 (m, 4H), 5.32 (s, 1H), 2.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 151.4, 128.4, 128.3, 126.9, 108.1, 106.0, 45.1, 13.6.^{8b,f,1}

12c: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.22 (m, 5H), 6.59–6.55 (m, 4H), 5.66 (s, 1H), 2.40 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 143.8, 139.0, 128.4, 128.3, 126.9, 125.6, 124.5, 47.6, 15.3.^{8b}

12d: brown solid; mp 187 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (br s, 2H), 7.40 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 7.6 Hz, 2H), 7.02 (t, J = 7.6

Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.61 (d, J = 1.6 Hz, 2H), 5.85 (s, 1H), 3.81 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 136.6, 136.2, 129.6, 127.0, 123.5, 121.8, 120.0, 119.9, 119.1, 113.5, 110.9, 60.4, 55.2.⁸ⁱ

12e: brown solid; mp 137–138 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (br s, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 1.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 7.13 (dd, J = 8.2, 1.5 Hz, 1H), 7.06 (d, J = 8.0 Hz, 2H), 6.75 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 1.5 Hz, 1H), 5.86 (s, 1H), 3.82 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 136.6, 135.7, 130.9, 127.0, 126.6, 125.9, 123.7, 121.7, 119.9, 119.8, 119.0, 111.0, 109.6, 60.4, 55.2, 16.3; ^{10a}

12f: pale brown solid; mp 96–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (br s, 2H), 7.38 (d, J = 7.2 Hz, 2H), 7.30 (d, J = 7.5 Hz, 2H), 7.21 (d, J = 7.5 Hz, 2H), 7.15 (t, J = 7.2 Hz, 2H), 7.07 (d, J = 7.2 Hz, 2H), 6.99 (d, J = 7.2 Hz, 2H), 6.59 (d, J = 1.5 Hz, 2H), 5.83 (s, 1H), 2.30 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 141.0, 136.7, 135.5, 128.9, 128.6, 127.1, 123.6, 121.9, 120.0, 119.9, 119.2, 111.0, 39.8, 21.1.⁸ⁱ

12g: pale brown solid; mp 79–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (br s, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.33–7.22 (m, 8H), 7.06 (t, J = 7.8 Hz, 2H), 6.54 (s, 2H), 5.90 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 136.6, 131.6, 129.9, 129.8, 126.7, 123.5, 121.9, 119.7, 199.2, 188.9, 111.1, 60.5.⁸ⁱ

12h: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 5.88–5.84 (m, 4H), 5.29 (s, 1H), 3.77 (s, 3H), 2.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 153.1, 151.3, 132.1, 129.3, 113.7, 107.9, 106.0, 55.1, 44.3, 13.5; HRMS-FAB (m/z) [M]⁺ calcd for C₁₈H₁₈O₃ 282.1256, found 282.1251.

12i: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 5.93 (s, 4H), 5.37 (s, 1H), 2.38 (s, 3H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 151.2, 137.0, 136.4, 129.0, 128.2, 107.9, 106.0, 44.7, 21.0, 13.5; HRMS-FAB (m/z) [M]⁺ calcd for C₁₈H₁₈O₂ 266.1307, found 266.1304.

12j: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 5.88–5.87 (m, 4H), 5.29 (s, 1H), 2.24 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 152.1, 151.6, 139.0, 131.5, 130.1, 120.8, 108.3, 106.1, 44.5, 13.5; HRMS-FAB (m/z) [M + H]⁺ calcd for C₁₇H₁₅BrO₂ 331.0334, found 331.0331.

12k: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.14 (m, 3H), 7.16–7.14 (m, 1H), 5.91–5.90 (m, 4H), 5.31 (s, 1H), 2.25 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 151.9, 151.7, 142.0, 134.2, 129.6, 128.5, 127.1, 126.6, 108.4, 106.1, 44.7, 13.5; HRMS-FAB (*m*/*z*) [M]⁺ calcd for C₁₇H₁₅ClO₂ 286.0761, found 286.0763.

12!: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 1.5 Hz, 1H), 7.50 (d, J = 8.5 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 5.92–5.91 (m, 4H), 5.36 (s, 1H), 2.24 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 151.9, 151.1, 141.6, 132.9, 131.9, 130.6, 129.1, 118.8, 112.4, 108.7, 106.2, 44.5, 13.5; HRMS-FAB (m/z) [M]⁺ calcd for C₁₈H₁₅NO₂ 277.1103, found 277.1103.

(m/z) [M]⁺ calcd for C₁₈H₁₅NO₂ 277.1103, found 277.1103. **12m:** viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 5.92–5.91 (m, 4H), 5.38 (s, 1H), 2.24 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 151.9, 151.1, 145.4, 132.2, 129.1, 118.8, 110.8, 108.7, 106.2, 44.9, 13.5; HRMS-FAB (m/z) [M]⁺ calcd for C₁₈H₁₅NO₂ 277.1103, found 277.1102.

12n: viscous mass; ¹H NMR (400 MHz, CDCl₃) δ 5.96 (d, J = 2.0 Hz, 2H), 5.85 (d, J = 2.0 Hz, 2H), 5.67 (d, J = 7.6 Hz, 1H), 2.30–2.26 (s, 1H), 2.25 (s, 6H), 0.88 (d, J = 7.6 Hz, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 153.3, 150.3, 106.8, 105.8, 46.3, 31.8, 20.7, 13.5.^{8e}

14a: white solid; mp 123–124 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.21 (m, 2H), 7.17 (d, J = 8.2 Hz, 1H), 7.05 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.6 Hz, 2H), 6.46 (d, J = 1.6 Hz,

2H), 6.37 (dd, J = 8.4, 1.6 Hz, 2H), 6.02 (s, 1H), 3.80 (s, 6H), 3.68 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 159.2, 158.0, 144.6, 130.4, 129.1, 127.8, 125.5, 125.3, 103.5, 98.7, 55.7, 55.2, 42.1.²⁴

14b: white solid; mp109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 8.6 Hz, 2H), 6.45 (d, J = 1.6 Hz, 2H), 6.37 (dd, J = 8.4, 1.6 Hz, 2H), 5.99 (s, 1H), 3.80 (s, 6H), 3.72 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 159.1, 158.1, 141.4, 134.9, 130.3, 129.0, 128.6, 125.6, 103.5, 98.7, 55.7, 55.2, 41.6, 21.0; HRMS-FAB (m/z) [M]⁺ calcd for C₂₄H₂₆O₄ 378.1831, found 378.1833.

14c: white solid; mp 153–154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.68 (d, J = 8.6 Hz, 2H), 6.48 (d, J = 1.6 Hz, 2H), 6.39 (dd, J = 8.4, 1.6 Hz, 2H), 5.99 (s, 1H), 3.79 (s, 6H), 3.69 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 159.4., 158.0, 143.3, 131.2, 130.4, 130.3, 127.9, 124.7, 103.6, 98.7, 55.6, 55.2, 41.7; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₃ClO₄ 398.1285, found 398.1285.

14d: white solid; mp 105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18–7.14 (m, 2H), 7.05 (s, 1H), 6.96–6.94 (m, H), 6.70 (d, J = 8.6 Hz, 2H), 6.48 (d, J = 1.6 Hz, 2H), 6.40 (dd, J = 8.4, 1.6 Hz, 2H), 6.01 (s, 1H), 3.82 (s, 6H), 3.76 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 159.4, 157.9, 147.0, 133.7, 130.3, 129.1, 127.3, 125.8, 124.4, 103.6, 98.7, 55.6, 55.2, 41.9; HRMS-FAB (m/z) [M]⁺ calcd for C₂₃H₂₃ClO₄ 398.1285, found 398.1289.

14e: white solid; mp 151–152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.8 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 9.1 Hz, 2H), 6.48 (d, J = 1.4 Hz, 2H), 6.39 (dd, J =

9.0, 1.4 Hz, 2H), 6.07 (s, 1H), 3.80 (s, 6H), 3.69 (s, 6H); 13 C NMR (100 Hz, CDCl₃) δ 159.7, 157.9, 146.0, 130.3, 129.6, 123.4, 123.1, 103.7, 98.7, 55.5, 55.2, 42.5; HRMS-FAB (*m*/*z*) [M]⁺ calcd for C₂₃H₂₃NO₆ 409.1525, found 409.1527.

14f: white solid; mp 97–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.25 (m, 2H), 7.21–7.19 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.8 Hz, 4H), 6.81 (d, J = 8.8 Hz, 4H), 5.44 (s, 1H), 3.78 (s, 6H); ¹³C NMR (100 Hz, CDCl₃) δ 157.9, 144.6, 136.4, 130.2, 129.3, 128.2, 126.1, 113.6, 55.2, 55.1.^{7.8f} **15:** white solid, mp 184–185 °C; ¹H NMR (400 MHz, CDCl₃)

15: white solid, mp 184–185 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 1H), 6.28 (dd, J = 8.0, 2.0 Hz, 1H), 6.23 (d, J = 2.0 Hz, 1H), 5.67 (d, J = 9.2 Hz, 1H), 5.51 (d, J = 9.0 Hz, 1H), 3.75 (s, 3H), 3.56 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 160.8, 157.2, 142.8, 140.0, 137.4, 131.1,130.1, 129.1, 128.5, 127.0, 120.9, 119.7, 104.1, 99.1, 58.1, 55.3, 21.4; HRMS-FAB (m/z) [M]⁺ calcd for C₂₂H₂₂O₄NBrS 475.0453, found 475.0454.

Acknowledgment. The authors thank the Centre for Biological Modulators of the KRICT for financial support. We also acknowledge the assistance by BK21 provided by the Korea Research Council.

Supporting Information Available: Experimental procedure and characterization data of all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.